
 

The INL is a U.S. Department of Energy National Laboratory 
operated by Battelle Energy Alliance 

INL/EXT-19-55616 
  

Application of Artificial 
Neural Network to Prompt 
Gamma Neutron Activation 
Analysis for Chemical 
Warfare Agents Identification 
 

Dongwon Lee 
 
 
 
 
 
September 2019 

 



 

 

 

 
 

DISCLAIMER 

This information was prepared as an account of work sponsored by an 

agency of the U.S. Government. Neither the U.S. Government nor any 

agency thereof, nor any of their employees, makes any warranty, expressed 

or implied, or assumes any legal liability or responsibility for the accuracy, 

completeness, or usefulness, of any information, apparatus, product, or 

process disclosed, or represents that its use would not infringe privately 

owned rights. References herein to any specific commercial product, 

process, or service by trade name, trade mark, manufacturer, or otherwise, 

does not necessarily constitute or imply its endorsement, recommendation, 

or favoring by the U.S. Government or any agency thereof. The views and 

opinions of authors expressed herein do not necessarily state or reflect 

those of the U.S. Government or any agency thereof. 



 

 

INL/EXT-19-55616 
  

Application of Artificial Neural Network to Prompt 
Gamma Neutron Activation Analysis for Chemical 

Warfare Agents Identification 

Dongwon Lee 
 

September 2019 

Idaho National Laboratory 
Nuclear Nonproliferation Division 

Idaho Falls, Idaho 83415  
 
 

http://www.inl.gov 

Prepared for the 
U.S. Department of Energy 

Office of National Nuclear Security Administration 
Under DOE Idaho Operations Office 

Contract DE-AC07-05ID14517 

 



 

 

 



 

 iii 

 

ABSTRACT 

 

The Portable Isotopic Neutron Spectroscopy (PINS) is a commercialized system developed by Idaho 

National Laboratory (INL) to examine chemical warfare agents (CWA) non-destructively, utilizing 

Prompt Gamma Neutron Activation Analysis (PGNAA) techniques. The PINS system takes advantage of 

a high-resolution gamma-ray spectrum from a mechanically-cooled high-purity germanium (HPGe) 

detector, and gamma-ray peak analysis provides input to its chemical identification logic with a 

probabilistic decision tree (PDT). The effectiveness of the chemical identification algorithm is determined 

by the availability of a wide range of data to train the algorithm to identify chemical-fills with accuracy. 

INL has a collection of gamma-ray spectra of various chemical-fills from the field-deployed PINS 

systems over the years, and it was envisaged to leverage such a database with the Artificial Neural 

Network (ANN) technique. Therefore, an ANN-based chemical identification algorithm was developed as 

an independent verification of the current algorithm. The ANN-based algorithm’s performance was 

evaluated against the U.S. Army blind test data, and results were presented and discussed in this study. 
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APPLICATION OF ARTIFICIAL NEURAL NETWORK TO PROMPT 

GAMMA NEUTRON ACTIVATION ANALYSIS FOR CHEMICAL WARFARE 

AGENTS IDENTIFICATION 

 

 

1. INTRODUCTION 

The Portable Isotopic Neutron Spectroscopy (PINS) is a highly fieldable system developed by Idaho 

National Laboratory (INL) to examine chemical munitions and containers non-destructively [1]. The 

PINS system is an application of the Prompt Gamma Neutron Activation Analysis (PGNAA) technique, 

and it has been successfully commercialized by ORTEC to assay chemical warfare agents (CWA) 

around the world [2]. The PINS system collects gamma-ray spectra using either a liquid nitrogen-cooled 

or a mechanically-cooled high-purity germanium (HPGe) detector to resolve many gamma-ray peaks 

emitted from neutron capture and neutron inelastic-scattering reactions on chemical compounds. A five 

microgram californium-252 source or a neutron generator is used to produce neutrons (see Figure 1). 

Background subtraction, energy calibration, peak searches and peak fittings are performed on the gamma-

ray peaks in the spectra collected from the CWA, then intensities and ratios of intensities of the selected 

peaks are used to find the most probable chemical fill in the database.  

Peak analysis combined with a probabilistic decision tree (PDT) as shown in Figure 2 has evolved to be 

an effective algorithm for the chemical identification through years of field operations. The splitting 

criteria at the nodes have been fine-tuned after analyzing many spectra of various chemical-fills. The 

performance of the chemical identification algorithm is highly dependent on the availability of a wide 

range of data that can be used to test and improve its accuracy. INL has a collection of gamma-ray spectra 

of various chemical-fills from the field-deployed PINS systems over the years, and it was envisaged to 

leverage such valuable resources with other classification methods. An algorithm based on the Principal 

Components Analysis (PCA) technique has shown possibility of unsupervised learning [3]. As part of an 

ongoing research effort to improve the PINS identification algorithm, an Artificial Neural Network 

(ANN) algorithm was developed to identify CWA. The results of CWA identification by the ANN 

technique are presented and discussed in this study.      

 

 

2. PREPARATION OF PINS DATA FOR TRAINING AND VALIDATION 

A total of 153 HPGe spectra of 21 different chemical-fills were prepared to train and validate an ANN 

model as summarized in Table 1. These gamma-ray spectra were previously collected with PINS-CF 

systems in the field operations and laboratory environment, and the assessed munitions (projectiles) 
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varied in size: bomblet, 4.2”, 75mm, 105mm, 155mm etc. After training, the ANN model was tested 

against a holdout dataset of 23 gamma-ray spectra as listed in Table 2. PINS+ spectral analysis on a 

spectrum produces a text file with all spectral analysis results, and Figure 3 shows a snippet from an 

example analysis file. This snippet shows the section of spectral analysis results on 27 elements. Some 

elements, however, were not directly related to chemical-fills of interest, e.g. iron, germanium and lead. 

Therefore, net count rate in counts per second (converted from Area/1ksec values in the analysis file) of 

only 15 key elements (P, O, N, As, Br, Sn, Ti, H, Si, Na, Ca, Zn, Cl, S and B) and the Cl/S ratio value 

were extracted to be the input values. A typical single hidden layer artificial neural network model was 

adopted to have the input layer of 16 nodes and the output layer of 21 nodes (21 chemical-fills to be 

identified) as illustrated in Figure 4. In order to evaluate the trained ANN model’s performance on a 

larger dataset, another collection of data from the blind test campaign in 2018 were prepared in the same 

way for performance evaluation of a trained ANN model, which is discussed further in Section 4.     

           

3. ANN TOOL  

The OCTAVE nnet-0.1.13 package is an ANN tool of a feedforward and backpropagation multi-layer 

neural network model, and the parameters to construct an ANN model in this study are shown in Table 3 

[4]-[5]. All data were preprocessed in columns so that the input dataset were presented as a 𝑅 × 𝑁 matrix, 

where 𝑅 is the number of input nodes (16 in this study) and 𝑁 is the number of input data (153 in this 

study). Then, the input dataset were randomly re-ordered and a third of the shuffled input dataset were 

reserved as a validation dataset to tune the model. The remaining training dataset, two thirds of the initial 

input data, were standardized to have a mean value of 0 and a standard deviation of 1, and the training 

dataset’s mean and standard deviation vectors (𝑅 × 1 vectors) were used to standardize the validation data 

and the holdout dataset. Next, an ANN model was trained and validated until two conditions were met: a 

trained model predicted the holdout dataset correctly and its MSE (Mean Squared Error) values between 

the true and the predicted outputs reached the minimum value.  

This procedure to train and test an ANN model was visualized in a flowchart shown in Figure 5, but it 

was not determined how many nodes in the hidden layer would be optimal for this study. When there are 

too few or too many hidden nodes, an ANN model is subject to under-fitting or over-fitting. Therefore, 

the procedure shown in Figure 5 was repeated for various numbers of hidden nodes from 5 to 32 in order 

to find the best performing number of hidden nodes. The minimum MSE value of the holdout dataset was 

calculated at the end of the iterations for a given number of hidden nodes. Figure 6 shows a plot of the 

minimum MSE values as a function of the number of hidden nodes. When the number of hidden nodes 

increases from 5, the MSE value decreases until the number of nodes reaches 17 and increases again past 
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17. As a result, the trained ANN model with 17 hidden nodes with the minimum MSE of 9.32e-4 was 

chosen to be used as a CWA identification algorithm. Table 4 and  
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Table 4. 21×23 matrix of true identities of the holdout test data.  

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

AF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

BL 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

POP 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Sand 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

CG 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

CK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

CNB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

CNS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

FM 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

FS 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

HC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

HD 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

HN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

L 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

SA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

BR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

WL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

VX 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 

GB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

WP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 

HE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 

 

 

 

 

 

 

 

 

 

Table 5 show the true and the predicted output values with the trained model with 17 hidden nodes, 

respectively.  

Once an ANN model was trained to meet two criteria, the key information of the trained ANN model 

were written to a summary file for future reference. The key information are vectors of means (a vector 

labeled 𝒄𝑴𝒆𝒂𝒏𝑰𝒏𝒑𝒖𝒕) and standard deviations (a vector labeled 𝒄𝑺𝒕𝒅𝑰𝒏𝒑𝒖𝒕) of the training data’s input 

values, a matrix of the input weights (a matrix labeled 𝑰𝑾), a matrix of the layer weights (a matrix 

labeled 𝑳𝑾), and two bias vectors (a vector labeled 𝑰𝑩 and a vector labeled 𝑳𝑩). For the trained ANN 

model in this study, 𝒄𝑴𝒆𝒂𝒏𝑰𝒏𝒑𝒖𝒕 and 𝒄𝑺𝒕𝒅𝑰𝒏𝒑𝒖𝒕 are both 16×1 vectors, 𝑰𝑩 is a 17×1 vector, 𝑳𝑩 is a 

21×1 vector, 𝑰𝑾 is a 17×16 matrix, and 𝑳𝑾 is a 21×17 matrix. It is not necessary for us to understand all 
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mathematics behind the ANN model provided by the OCTAVE nnet-0.1.13 package, but the output 

values in the output layer can be explained by a series of matrix operations with these vectors and the 

matrices from the trained ANN model. First, the count rates of the 15 elements and the Cl/S ratio, 𝑟𝑖, were 

standardized by 

𝑅𝑖 =
(𝑟𝑖 − �̅�𝑖)

𝜎𝑖
,        𝑖 = 1 ⋯ 16 (1) 

where 𝑅𝑖 is standardized count rate, �̅�𝑖 and 𝜎𝑖 are the mean and the standard deviation of 𝑟𝑖 values in the 

training data set, respectively. The standardized count rates were used to calculate 𝐴𝑗 values in the hidden 

layer as shown in Figure 7, and 𝐴𝑗 values were calculated by 

𝐴𝑗 = 𝑙𝑜𝑔𝑠𝑖𝑔 (𝐼𝐵𝑗 + ∑ 𝑅𝑖 × 𝐼𝑊𝑗,𝑖

16

𝑖

) ,       𝑗 = 1 ⋯ 17 (2) 

where 𝑙𝑜𝑔𝑠𝑖𝑔 is the log-sigmoid transfer function, 𝐼𝐵𝑗 is the jth element of the input bias vector 𝑰𝑩 and 

𝐼𝑊𝑗,𝑖 is the (j, i) element of the input weight matrix 𝑰𝑾. Similarly, 𝐴𝑗 values in the hidden layer were 

used to calculate 𝑂𝑘 values in the output layer as shown in Figure 7, and 𝑂𝑘 values were calculated by 

𝑂𝑘 = 𝑙𝑜𝑔𝑠𝑖𝑔 (𝐿𝐵𝑘 + ∑ 𝐴𝑗 × 𝐿𝑊𝑘,𝑗

17

𝑗

) ,       𝑘 = 1 ⋯ 21 (3) 

where 𝐿𝐵𝑘 is the kth element of the layer bias vector 𝑳𝑩 and 𝐼𝑊𝑘,𝑗 is the (k, j) element of the input weight 

matrix 𝑳𝑾. An octave script file to perform all processes described in this section is shown in APPENDIX A: 

ANN_TEST.M.  

 

4. BLIND TEST DATA 

Data from the blind test campaign performed in 2018 were tested by the trained ANN model in order to 

evaluate performance of the ANN technique for PINS-CF CWA identification. The blind test data were 

from chemical fills in the 4.2” mortar projectiles inside 7” Multiple Round Container (MRC). A total of 

93 blind test spectra collected with PINS-CF systems were available for this study, and there were 21 

spectra whose chemical-fills were not included in the ANN model’s training: AC (hydrogen cyanide), CN 

(chloroacetophenone), PS (chloropicrin), TH3 (thermate) and “empty”. Also, the blind test data didn’t 

include spectra with 7 chemical-fills included in the training: AF, BL, POP, FM, HC, SA and WP. Table 

6 shows the predicted results against the blind test data by the trained ANN model as well as those from 

PINS+ v6.5.2 analysis. As mentioned above, the trained ANN model was not taught to identify AC, CN, 

PS, TH3 and “empty” so only the 72 blind test data of 15 chemical-fills were used to create a multi-class 
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confusion matrix shown in Figure 8. WP was not one of the chemical-fills included in the blind test, but it 

was included in the 15 chemical-fills since some GA/GB runs were falsely predicted as WP by the trained 

ANN model. The numbers of true positives, false negatives, false positives and true negatives are 

summarized in Table 7. Also, true positive rates (TPR), false negative rates (FNR), false positive rates 

(FPR), true negative rates (TNR), accuracy and precision values for 15 chemical-fills are shown in Table 

7. TPR, FNR, FPR and TNR are defined by 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(4) 

where TP, TN, FP and FN represent the number of true positives, true negatives, false positives and false 

negatives. The accuracy and the precision (also known as Positive Prediction Value, PPV) values were 

defined by 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5) 

and by 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6) 

The overall accuracy and the precision values for all 15 chemical-fills were found to be 92% and 38% by 

the trained ANN model. Figure 9 shows a plot of 15 chemical-fills of the blind test data on the FPR-TPR 

space from positive prediction where the point (0.0, 1.0) represents a perfect classification (corresponding 

to 100% TPR and 0% FPR). The chemical-fills plotted above the diagonal dashed line (also known as the 

line of no-discrimination) were considered predicted better than those below the line. 7 chemical-fills on 

the bottom left of the plot had 0 true positives as summarized in Table 7. All 7 CK runs were mistaken for 

CG, and all CNB and CNS runs were incorrectly predicted to be other chemical-fills. CG, CK, CNS and 

CNB could be easily mistaken for each other due to their subtle differences, making them a group of high 

false positive and false negative rates. As a result, CG ended up with the highest false positive rate of 

29%. The trained ANN model also poorly performed on BR2 and WL possibly due to weak arsenic count 
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rate in the blind test data. GA/GB runs were also mistaken for WP, increasing WP’s false positive rate to 

8%.        

 

5. SUMMARY 

The Octave nnet-0.1.13 package was used to identify chemical-fills for PINS-CF systems. An ANN 

model was trained and validated with a total of 153 spectra of 21 different chemical-fills in various 

munition sizes. A total of 23 spectra were reserved as a holdout dataset, and the number of nodes in the 

hidden layer were found to be 17 after searching for the least MSE value with the holdout dataset. Then, 

the trained ANN model was applied to the U.S. Army blind test data collected with PINS-CF systems in 

2018, and the ANN model’s performance evaluation results were presented in this report. The overall 

accuracy and the precision values for 15 chemical-fills were found to be 92% and 38%, respectively. In 

comparison with the ANN model, the PINS+ V6.5.2 analysis results showed remarkable 98% accuracy 

and 83% precision due to its sophisticated PDT algorithm.   

It is speculated that higher false positive rates of CG and low true positive rates of CK, CNB and CNS 

could be improved by introducing the chlorine i/c ratio as the 17th input variable in the future study. It is 

desirable to keep growing the training and holdout datasets with a larger population to improve the ANN 

technique’s precision, especially for BR2, WL and GA/GB. Simulated spectra of rare chemical-fills using 

MCNP would be a potential solution to be considered to increase the population of the training data.  

Finally, it would be an interesting idea to train an ANN model to identify chemical-fills in specific 

munition sizes, e.g. 75mm-HD or 155mm-HD, since count rates are sensitive to the munition sizes as well 

as the chemical compositions.             
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Figure 1. (Left) a schematic of the PINS system. (Right) the latest generation of the PINS system with a 

D-D neutron generator and a mechanically-cooled HPGe detector.   
 

 

Figure 2. Probabilistic decision tree for the PINS CWA identification algorithm [2].    
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Figure 3. Snippet of the summary section from a PINS+ analysis file. This section summarizes count rates 

(net area per 1000 seconds) of 27 key elements. Some elements are not related to chemical-fills so only 

15 count rates and the Cl/S ratio were used as input values.  

 

 
Figure 4. A model of single layer artificial neural network for PINS CWA identification. The input layer 

has a total of 16 nodes of count rates of the key elements and Cl/S ratio, and the output layer has 21 nodes 

for possible chemical-fills.     



 

 7 

 

 
Figure 5. A procedure used in this study to train and find an optimized ANN model.   

 

 

 

 
Figure 6. The optimal number of nodes in the hidden layer after the same procedure shown in Figure 5 

was repeated by varying the number of nodes in the hidden layer. Mean-squared-error values of the 

holdout test data were plotted as a function of the number of nodes in the hidden layer.  
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Figure 7. Conversion process of raw input values into output values in the trained ANN model. The raw 

input values were standardized followed by a series of matrix operations. The standardized input values 

contribute to each node in the hidden layer by the input weight matrix and the input bias vector, and each 

node in the output layer is calculated by the layer weight matrix and the layer bias vector.       
 

 
Figure 8. Confusion matrix of the blind test data identification results by the trained ANN model. 72 out 

of the 93 blind test data were tested. 5 chemical-fills were not include in this matrix because four 

chemical-fills (AC, CN, PS, TH3 and “empty”) were not used in the training and the blind test data didn’t 

include two practice fills (AF and BL). The overall precision was found to be 38%, and the overall 

accuracy of 92% was achieved by the trained ANN model.    
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Figure 9. A plot of TPR vs. FPR values of the blind test data predicted by the trained ANN model.    
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Table 1. Summary of the 153 input spectra of 21 chemical-fills. These spectra were randomly split into 

the training (102 spectra) and the validation (51 spectra) sets.  

Chemical-fills # of spectrum Chemical-fills # of spectrum 

AF (antifreeze) 6 HD 11 

BL (Bleach) 15 HN 7 

POP (Plaster of Paris) 5 L 4 

Sand 16 SA 3 

CG 18 BR2 3 

CK 4 WL 4 

CNB 7 VX 5 

CNS 4 GA/GB 3 

FM 13 WP 8 

FS 8 HE 5 

HC 4   

 

 

Table 2. The holdout test data of 23 spectra dedicated to evaluate the trained ANN model.  

Test spectrum Chemical-fills Description 

1 BL (bleach) 155mm projectile 

2 POP 4.2” mortar projectile 

3 Sand 75mm projectile 

4 FM 75mm projectile 

5 FM Livens projector 

6 FS 4.2” mortar projectile 

7 HD 4.2” mortar projectile 

8 HD 4.2” mortar projectile 

9 CG 155mm projectile 

10 CG 4.2” mortar projectile 

11 CG 75mm projectile 

12 L 4.2” mortar projectile 

13 L 4.2” mortar projectile 

14 GB 155mm projectile 

15 GB 155mm projectile 

16 VX 155mm projectile 

17 VX 155mm projectile 

18 WP 75mm projectile 

19 WP 155mm projectile 

20 HE (Comp. B) 105mm projectile 

21 HE (Comp. B) 155mm projectile 

22 HE (RDX) 75mm projectile 

23 HE (TNT) 4.2” mortar projectile 
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Table 3. Parameters used at the time of defining a model [4]-[5].  

Parameter for an ANN model Value 

Size of the training set 102 

Size of the validation set 51 

Size of the test set 23 

Nodes in the hidden layer Varied from 5 to 32 

Nodes in the output layer 21 

Transfer function logsig (log sigmoidal) 

Backpropagation training function trainlm (nnet default) 

Backpropagation weight/bias learning function learngdm (nnet default) 

Performance function MSE (mean squared error) 
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Table 4. 21×23 matrix of true identities of the holdout test data.  

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

AF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

BL 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

POP 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Sand 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

CG 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

CK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

CNB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

CNS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

FM 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

FS 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

HC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

HD 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

HN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

L 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

SA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

BR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

WL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

VX 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 

GB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

WP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 

HE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 
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Table 5. 21×23 matrix of predicted output values by the trained ANN model with 17 hidden nodes. The MSE value was calculated to be 9.32e-4.  

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

AF 9.7E-6 3.3E-6 1.4E-4 6.2E-4 2.2E-7 1.1E-5 9.9E-5 8.5E-5 6.1E-5 2.6E-3 1.1E-3 1.3E-6 3.3E-7 8.8E-7 1.7E-7 6.6E-7 9.3E-7 1.2E-6 2.3E-6 9.9E-5 1.5E-5 2.4E-5 1.0E-4 

BL 1.0E+0 2.8E-6 1.2E-5 2.6E-4 1.8E-9 1.3E-5 1.1E-6 4.1E-6 1.1E-2 2.7E-2 1.4E-2 3.2E-5 6.8E-5 7.0E-3 1.8E-3 4.4E-4 4.5E-3 0.0E+0 0.0E+0 7.2E-5 4.1E-5 6.2E-7 4.5E-6 

POP 4.7E-4 1.0E+0 2.0E-3 8.8E-7 5.7E-8 1.4E-3 5.8E-5 5.1E-5 2.4E-4 4.7E-4 8.3E-4 1.4E-4 3.9E-5 1.1E-3 1.5E-2 8.8E-3 3.0E-3 1.3E-6 1.0E-6 2.6E-4 1.4E-3 5.9E-4 5.2E-4 

Sand 1.9E-9 8.3E-2 9.9E-1 7.2E-3 8.4E-6 7.3E-6 5.8E-4 2.2E-4 5.5E-1 4.2E-4 2.8E-4 1.8E-1 9.8E-4 2.4E-3 9.4E-4 1.0E-2 7.4E-3 2.5E-2 7.1E-3 1.3E-2 2.0E-1 7.8E-5 3.4E-3 

CG 1.4E-3 2.9E-3 6.9E-4 1.4E-5 1.8E-4 2.0E-9 1.6E-4 1.1E-5 9.9E-1 9.3E-1 9.8E-1 5.3E-8 8.2E-8 0.0E+0 4.0E-6 0.0E+0 0.0E+0 0.0E+0 0.0E+0 7.0E-7 2.4E-7 2.4E-4 9.9E-5 

CK 1.1E-3 1.4E-7 1.3E-5 4.8E-3 2.6E-7 0.0E+0 1.4E-3 1.0E-2 2.9E-4 1.7E-1 7.9E-2 4.7E-3 1.1E-3 1.4E-3 2.0E-3 2.6E-3 2.5E-4 0.0E+0 0.0E+0 1.4E-3 5.1E-5 4.8E-2 3.2E-4 

CNB 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 

CNS 0.0E+0 1.2E-4 1.1E-6 0.0E+0 0.0E+0 0.0E+0 2.2E-4 4.1E-5 4.5E-4 6.8E-3 3.2E-4 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 2.6E-9 1.2E-8 1.9E-3 3.6E-2 1.2E-4 1.9E-3 

FM 3.7E-4 1.2E-9 4.4E-6 1.0E+0 1.0E+0 1.2E-7 1.8E-7 1.3E-7 2.7E-6 3.2E-5 2.0E-3 1.1E-8 5.4E-8 2.0E-3 5.4E-3 9.1E-7 3.7E-7 5.6E-7 1.3E-5 1.7E-3 1.4E-3 4.7E-3 1.7E-3 

FS 8.5E-4 1.3E-4 5.2E-5 8.1E-5 1.3E-2 9.9E-1 1.5E-3 2.1E-3 8.8E-6 3.0E-5 8.7E-5 1.9E-3 3.4E-3 2.3E-5 3.7E-5 6.3E-7 2.1E-6 7.9E-4 6.1E-4 1.4E-4 6.5E-5 2.8E-5 4.8E-5 

HC 1.9E-5 1.7E-4 1.4E-3 9.6E-5 4.4E-3 2.3E-4 6.0E-5 7.7E-5 1.2E-5 9.2E-5 2.0E-5 3.0E-5 1.2E-4 4.4E-5 4.6E-6 3.3E-4 2.0E-4 5.9E-6 8.2E-6 1.4E-3 1.1E-3 2.2E-3 5.8E-4 

HD 6.9E-8 6.9E-4 2.3E-5 0.0E+0 0.0E+0 1.8E-2 1.0E+0 1.0E+0 1.7E-6 1.1E-4 3.5E-6 1.5E-3 1.1E-4 9.3E-8 3.2E-8 1.3E-9 1.3E-9 2.0E-4 1.2E-5 0.0E+0 0.0E+0 1.8E-8 0.0E+0 

HN 1.3E-3 3.2E-7 3.8E-7 7.7E-4 2.0E-2 9.8E-4 1.5E-4 4.9E-4 0.0E+0 3.3E-4 1.0E-5 3.7E-8 1.9E-7 3.1E-5 2.2E-6 6.4E-7 8.1E-7 1.7E-5 2.8E-4 6.2E-4 6.3E-4 8.0E-4 3.9E-4 

L 1.8E-4 6.9E-5 2.2E-5 5.3E-6 9.0E-6 3.5E-2 2.6E-5 9.2E-5 1.4E-5 2.3E-4 3.5E-4 9.9E-1 9.8E-1 6.3E-4 8.3E-4 3.5E-4 1.3E-4 2.5E-5 2.2E-5 2.2E-3 6.0E-5 9.4E-4 6.6E-4 

SA 4.2E-7 1.3E-5 2.7E-2 4.6E-8 2.9E-7 3.5E-8 7.2E-9 1.7E-8 1.7E-5 2.1E-5 8.9E-6 6.6E-2 2.9E-3 1.0E-4 3.3E-5 6.3E-3 1.2E-3 8.3E-5 4.4E-5 6.8E-5 2.2E-7 2.8E-4 5.3E-5 

BR 2.9E-4 6.4E-7 2.9E-4 1.7E-6 2.2E-5 2.3E-5 2.1E-4 8.8E-4 8.9E-7 3.5E-5 1.0E-6 3.1E-2 6.1E-3 2.1E-6 4.0E-7 3.3E-6 2.6E-6 1.6E-7 1.5E-7 3.4E-4 3.8E-5 1.1E-3 7.4E-5 

WL 1.1E-3 2.1E-7 2.2E-4 2.0E-4 4.1E-5 1.4E-2 8.8E-4 2.7E-3 5.9E-8 3.9E-8 7.0E-7 2.4E-4 9.7E-4 4.6E-5 1.1E-5 5.5E-4 3.2E-4 2.0E-5 2.8E-6 1.4E-2 8.5E-3 8.2E-2 6.4E-3 

VX 5.7E-4 1.8E-3 4.7E-5 4.3E-5 2.6E-5 1.2E-3 1.5E-4 7.1E-4 2.9E-5 1.4E-5 8.9E-6 6.6E-3 2.9E-3 5.2E-3 6.9E-4 1.0E+0 9.8E-1 3.2E-3 3.3E-4 4.5E-3 1.8E-3 3.1E-3 4.5E-4 

GB 6.4E-3 1.5E-6 9.0E-7 7.7E-4 9.7E-5 1.9E-4 1.2E-7 4.0E-7 2.5E-6 5.2E-5 9.8E-4 2.3E-4 1.3E-3 9.9E-1 9.8E-1 2.6E-3 1.3E-3 9.4E-5 2.3E-3 4.9E-5 1.7E-5 4.0E-5 1.2E-5 

WP 1.9E-8 9.2E-8 7.8E-6 7.5E-7 1.2E-3 3.7E-2 1.7E-7 6.3E-8 6.9E-7 1.4E-6 2.1E-5 1.7E-5 1.2E-4 2.7E-3 5.9E-3 6.8E-9 4.3E-8 1.0E+0 1.0E+0 9.1E-5 1.8E-5 2.5E-4 3.0E-4 

HE 6.6E-7 8.5E-8 2.8E-4 4.0E-5 5.5E-3 6.7E-6 4.1E-9 8.0E-9 5.8E-7 1.5E-5 4.1E-5 2.2E-4 2.1E-4 5.0E-5 4.2E-5 1.6E-3 2.9E-3 3.3E-5 1.8E-4 1.0E+0 9.9E-1 9.6E-1 9.8E-1 
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Table 6. Summary of the 93 blind test data with PINS-CF systems. The true identities and the predictions 

by PINS+ and ANN technique are shown. It should be noted that AC, CN, PS, TH3 and “empty” were not 

used to train an ANN model in this study. The 21 blind test runs with these 5 fills are shown in gray.   

Run name True ID 

Predicted ID 

PINS+ v6.5.2 ANN 

ID Score ID Value 

APG-18-593_P22_10Aug18_009 FS FS 100 FS 1.00 

BT18-001_P2_20Jul18_009 CG CG 100 CG 1.00 

BT18-002_P2_20Jul18_006 HN3 CNB 65 HN 0.32 

BT18-003_P2_20Jul18_003 CK CNS 100 CG 0.77 

BT18-004_P2_20Jul18_012 AC AC/HE 100 HE 0.2 

BT18-005_P2_23Jul18_009 PS CG 100 CG 1.00 

BT18-006_P2_23Jul18_012 CG CG 100 CG 1.00 

BT18-007_P2_23Jul18_003 CK CG 100 CG 1.00 

BT18-008_P2_23Jul18_006 WL WL 100 CG 0.22 

BT18-009_P22_10Aug18_003 CG CG 100 CG 1.00 

BT18-010_P22_10Aug18_006 AC AC/HE 100 HE 1.00 

BT18-011_P2_24Jul18_003 CNS CG 100 CG 1.00 

BT18-012_P2_24Jul18_006 HN3 CN 60 Sand 0.01 

BT18-013_P2_25Jul18_009 CK CG 100 CG 1.00 

BT18-014_P2_25Jul18_014 VX VX 100 GB 0.51 

BT18-015_P2_25Jul18_003 CG CG 100 CG 1.00 

BT18-016_P2_25Jul18_006 GA GA 100 WP 0.47 

BT18-017_P2_26Jul18_009 HD HD 100 CG 1.00 

BT18-018_P2_26Jul18_012 CG CG 100 CG 1.00 

BT18-019_P2_26Jul18_003 CNS CNS 100 CG 1.00 

BT18-020_P2_26Jul18_006 GB GB 100 WP 1.00 

BT18-021_P2_27Jul18_009 PS CG 100 CG 1.00 

BT18-022_P2_27Jul18_012 GA GA 100 HE 0.98 

BT18-023_P2_27Jul18_003 CG CG 100 CG 1.00 

BT18-024_P2_27Jul18_006 GB GB 100 WP 0.63 

BT18-025_P2_30Jul18_009 VX VX 100 GB 0.79 

BT18-026_P2_30Jul18_012 CK CG 100 CG 1.00 

BT18-027_P2_30Jul18_003 GB GB 100 WP 0.42 

BT18-028_P2_30Jul18_006 CG CG 98 CG 1.00 

BT18-029_P2_31Jul18_009 HD HD 100 CG 0.99 

BT18-030_P2_31Jul18_012 L L 100 L 0.81 

BT18-031_P2_31Jul18_003 PS CG 88 CG 1.00 

BT18-032_P2_31Jul18_006 CNS CG 100 CG 1.00 

BT18-033_P2_01Aug18_009 L L 100 L 0.99 

BT18-034_P2_01Aug18_012 CNB CNB 100 CNS 0.04 

BT18-035_P2_01Aug18_003 HD HD 100 HD 0.80 
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Table 6. Continued. 

Run name True ID 

Predicted ID 

PINS+ v6.5.2 ANN 

ID Score ID Value 

BT18-036_P2_01Aug18_006 PS CK 99 HE 0.35 

BT18-037_P2_02Aug18_009 CNS CNS 100 CK 0.50 

BT18-038_P2_02Aug18_012 CK CG 100 CG 0.49 

BT18-039_P2_02Aug18_003 GB GB 100 WP 0.67 

BT18-040_P2_02Aug18_006 GA GA 100 HE 0.83 

BT18-041_P2_03Aug18_009 FS FS 100 FS 0.79 

BT18-042_P2_03Aug18_012 PS CG 100 CG 1.00 

BT18-043_P2_03Aug18_003 GB GB 100 WP 0.08 

BT18-044_P2_03Aug18_006 VX VX 100 VX 0.86 

BT18-045_P2_06Aug18_009 CK CG 100 CG 1.00 

BT18-046_P2_06Aug18_012 AC AC/HE 100 Sand 0.25 

BT18-047_P2_06Aug18_003 HD HD 100 HD 0.69 

BT18-048_P2_06Aug18_006 GA GA 100 HE 0.48 

BT18-049_P2_07Aug18_009 HN3 HN 52 HN 0.89 

BT18-050_P2_07Aug18_012 L L 90 CG 1.00 

BT18-051_P2_07Aug18_003 CN CN 89 CG 0.63 

BT18-052_P2_07Aug18_006 VX VX 100 HE 0.43 

BT18-053_P22_08Aug18_006 HN3 CNB 39 CNS 0.99 

BT18-054_P22_08Aug18_009 PS CG 100 Sand 0.64 

BT18-055_P19_08Aug18_003 VX VX 100 VX 1.00 

BT18-056_P22_08Aug18_003 GA GA 100 VX 0.92 

BT18-057_P22_09Aug18_009 AC AC/HE 100 HE 1.00 

BT18-058_P22_09Aug18_012 HD HD 100 CG 0.89 

BT18-059_P22_09Aug18_003 CNS CNS 100 CG 1.00 

BT18-060_P22_09Aug18_006 L L 100 L 0.91 

BT18-061_P22_23Aug18_009 FS FS 100 FS 0.96 

BT18-062_P22_23Aug18_012 CK CG 100 CG 1.00 

BT18-063_P22_23Aug18_003 HN3 HN 45 CNS 0.98 

BT18-064_P22_23Aug18_006 CNS CG 100 CG 1.00 

BT18-065_P22_14Aug18_009 CNB CNB 57 CNS 0.97 

BT18-066_P22_14Aug18_012 BR2 BR2 99 Sand 0.28 

BT18-067_P22_14Aug18_003 TNT HE 100 HE 0.98 

BT18-068_P22_14Aug18_006 Empty Sand 73 Sand 1.00 

BT18-069_P22_15Aug18_009 WL WL 100 Sand 0.14 

BT18-070_P22_15Aug18_012 AC AC/HE 100 HE 1.00 

BT18-071_P22_15Aug18_003 CNS CNS 100 HN 0.10 

BT18-072_P22_15Aug18_006 BR2 BR2 80 Sand 0.48 

BT18-073_P22_16Aug18_009 CNB CNB 50 CNS 1.00 
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Table 6. Continued. 

Run name True ID 

Predicted ID 

PINS+ v6.5.2 ANN 

ID Score ID Value 

BT18-074_P22_16Aug18_012 PS CG 100 CG 1.00 

BT18-075_P22_16Aug18_003 CN CN 100 CG 0.08 

BT18-076_P22_16Aug18_006 Sand Sand 100 Sand 1.00 

BT18-077_P22_17Aug18_009 WL WL 100 CG 0.97 

BT18-078_P22_17Aug18_012 CNB CNB 89 CG 0.50 

BT18-079_P22_17Aug18_003 Sand Sand 100 Sand 1.00 

BT18-080_P22_17Aug18_006 TH3 Unknown 0 CG 1.00 

BT18-081_P22_20Aug18_009 L L 100 L 0.94 

BT18-082_P22_20Aug18_012 BR2 BR2 75 L 0.47 

BT18-083_P22_20Aug18_003 HE HE 100 HE 0.75 

BT18-084_P22_20Aug18_006 Empty Unknown 0 Sand 0.96 

BT18-085_P22_21Aug18_009 TH3 Unknown 0 Sand 0.89 

BT18-086_P22_21Aug18_012 CN CN 89 CNS 0.17 

BT18-087_P22_21Aug18_003 Empty Sand 53 CG 0.99 

BT18-088_P22_21Aug18_006 FS FS 100 FS 0.96 

BT18-089_P22_24Aug18_009 CNB CNB 99 HN 0.53 

BT18-090_P22_24Aug18_012 HE HE 100 HE 0.89 

Bt18-091_P22_24Aug18_003 Sand Sand 100 Sand 1.00 

BT18-092_P22_24Aug18_006 TH3 Unknown 0 Sand 0.61 
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Table 7. Summary of the confusion matrix for the ANN model (see Figure 8).  

ID TP FN FP TN 

TPR = 

TP

TP + FN
 

FNR = 

FN

TP + FN
 

FPR = 

FP

TN + FP
 

TNR = 

TN

TN + FP
 

Accuracy = 

TP + TN

TP + TN + FP + FN
 

Precision= 

 
TP

TP + FP
 

CG 7 0 19 46 1.00 0.00 0.29 0.71 0.74 0.27 

CK 0 7 1 64 0.00 1.00 0.02 0.98 0.89 0.00 

CNB 0 5 0 67 0.00 1.00 0.00 1.00 0.93 - 

CNS 0 7 5 60 0.00 1.00 0.08 0.92 0.83 0.00 

FS 4 0 0 68 1.00 0.00 0.00 1.00 1.00 1.00 

HD 2 3 0 67 0.40 0.60 0.00 1.00 0.96 1.00 

HN 2 3 2 65 0.40 0.60 0.03 0.97 0.93 0.50 

L 4 1 1 66 0.80 0.20 0.01 0.99 0.97 0.80 

BR2 0 3 0 69 0.00 1.00 0.00 1.00 0.96 N/A 

WL 0 3 0 69 0.00 1.00 0.00 1.00 0.96 N/A 

VX 2 3 1 66 0.40 0.60 0.01 0.99 0.94 0.67 

GA/GB 0 10 2 60 0.00 1.00 0.03 0.97 0.83 0.00 

WP 0 0 6 66 N/A N/A 0.08 0.92 0.92 0.00 

HE 3 0 4 65 1.00 0.00 0.06 0.94 0.94 0.43 

Sand 3 0 4 65 1.00 0.00 0.06 0.94 0.94 0.43 

Overall 27 45 45 963 0.38 0.63 0.04 0.96 0.92 0.38 
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APPENDIX A: ANN_TEST.M 

 

## Copyright (C) 2007 Michel D. Schmid  <michaelschmid@users.sourceforge.net> 

## 

## 

## This program is free software; you can redistribute it and/or modify it 

## under the terms of the GNU General Public License as published by 

## the Free Software Foundation; either version 2, or (at your option) 

## any later version. 

## 

## This program is distributed in the hope that it will be useful, but 

## WITHOUT ANY WARRANTY; without even the implied warranty of 

## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 

## General Public License for more details. 

## 

## You should have received a copy of the GNU General Public License 

## along with this program; see the file COPYING.  If not, see 

## <http://www.gnu.org/licenses/>. 

 

## author: msd 

##  ---- 07/2019 The original script was modified and renamed by D. Lee for this study   

 

## load data of 176 rows 

# Input file contains 37 columns. The first 16 columns are input and the last 21 columns are output 

mData = load("-ascii", "cr_ann_data_compact.txt"); 

[nRows, nColumns] = size(mData); 

mOutput = mData(:, end-20:end); 

mInput = mData(:, 1:end-21); 

 

## now prepare data column-wise 

mInput = mInput'; 

mOutput = mOutput'; 

 

# now split the data matrix in 3 pieces, train data, test data and validate data 

# last 23 demo spectra were used for the holdout test data 

nTestSets = 23; 

 

mTestInput = mInput(:, end-(nTestSets-1):end); 

mTestOutput = mOutput(:, end-(nTestSets-1):end); 

mInput(: ,end-(nTestSets-1):end) = []; 

mOutput(:, end-(nTestSets-1):end) = []; 

 

# True answers for the holdout test data 

id = [2 3 4 9 9 10 12 12 5 5 5 14 14 19 19 18 18 20 20 21 21 21 21]; 

 

## define the number of neutrons in the hidden and the output layers 

nHiddenNeurons = 17; 

nOutputNeurons = 21; 
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# change this to lower target MSE value 

target_mse = 0.002;  

## start iterations till two conditions are met 

do  

   nTrainSets = nRows-nTestSets; 

 nValiSets = floor(nTrainSets/3.0); 

 order = randperm(nTrainSets); 

 mInput(:, order) = mInput; 

 mOutput(:, order) = mOutput; 

 mInputClone = mInput; 

 mOutputClone = mOutput; 

  

 mValiInput = mInputClone(:, 1:nValiSets); 

 mValliOutput = mOutputClone(:, 1:nValiSets); 

 mInputClone(:, 1:nValiSets) = []; 

 mOutputClone(:, 1:nValiSets) = []; 

 mTrainInput = mInputClone(:, 1:end); 

 mTrainOutput = mOutputClone(:,1:end); 

 

 # standardize inputs 

 [mTrainInputN,cMeanInput,cStdInput] = prestd(mTrainInput); 

  

 # define the max and min inputs for each row 

 mMinMaxElements = min_max(mTrainInputN); 

  

 # define an ANN model structure 

MLPnet = newff(mMinMaxElements, [nHiddenNeurons OutputNeurons], {"logsig", “logsig"}, 

"trainlm", "learngdm", "mse"); 

  

 ## standardize the validate data 

 VV.P = mValiInput; 

 VV.T = mValliOutput; 

 VV.P = trastd(VV.P, cMeanInput, cStdInput); 

  

 ## train the network 

 MLPnet.trainParam.show = NaN; 

 net.trainParam.epochs = 100; 

 nnet.trainParam.goal = 0.00; 

   

 [net] = train(MLPnet, mTrainInputN, mTrainOutput, [], [], VV);  

  

 ## make preparations for net test and test MLPnet 

 ## standardize input & output test data 

 [mTestInputN] = trastd(mTestInput, cMeanInput, cStdInput);  

  

 #     % simulate net 

 [trainOut] = sim(net, mTrainInputN); 

 [simOut] = sim(net,mTestInputN); 

 [v, idx] = max(simOut(:, :)); 

 

 # calculate MSE as a measure of performance 
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 perf_test = sum(sum((mTestOutput-simOut).^2))/prod(size(simOut)); 

until (sum(abs(id-idx)) < 1 & (perf_test < target_mse)) 

 

 

display(perf_test); 

 

# save ANN results of test cases to a CSV file 

dlmwrite('summary.csv', simOut, ","); 

# save cMeanInput vector 

dlmwrite('summary.csv', cMeanInput, ",", "-append", "roffset", 1); 

# save cStdInput vector 

dlmwrite('summary.csv', cStdInput, ",", "-append", "roffset", 1); 

# save IW matrix 

dlmwrite('summary.csv', net.IW{1}, ",", "-append", "roffset", 1); 

# save LW matrix 

dlmwrite('summary.csv', net.LW{2}, ",", "-append", "roffset", 1); 

# save IB vector 

dlmwrite('summary.csv', net.b{1}, ",", "-append", "roffset", 1); 

# save LB vector 

dlmwrite('summary.csv', net.b{2}, ",", "-append","roffset", 1); 
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